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FOREWORD

A research investigation, "Feasibility Study on Epoxy and Polyester

Resin and Portlend-Cement .ouncrete Beams," sponsored Ly the Assistunt
Secretary of the Army (R&D), was authorized by a memorandum to the Chief,
Concrete Division, U. S. Army Engineer Waterways Experiment Station (WES),
dated 10 November 1965, File WESVB, Subject: "In-House Laboratory Ini-
tiated Research Program, FY 66."

The work was performed at the WES Concrete Division during the period
January 1966 to December 1967, under the direction of Messrs. Bryant Mather,
James M. Polatty, Dr. Helmut G, Geymayer, €P 5 William E. Walker, and
SP 4 William D. Smart. This report was prepared by Dr. Geymayer.

Directors of the WES during the investigation and the preparation of
this report were COL John R. Oswalt, Jr., CE, and COL Levi A. Brown, CE.

Mr. 3. B, Tiffany was Technical Director.
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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric

units as follows:

Muliipiy By To Obtain
inches 2.54 centimeters
feet 0.30L8 meters
square inches 6.4516 square centimeters
cubic feet 0.0283168 cubic meters
cubic yards 0,764555 cubic meters
quarts 0.946353 cubic decimeters
gallons (U.S.) 3.785412 cubic decimeters
pounds 0.L45359237 xiloerams
tons (2000 pourds) 907.185 kilograms
pounds per square inch 0.070307 kilograms per square centimeter
pancs pers cubic foot 16.0185 kilograms per cubic meter
foot -prunds 0.128255 meter-xiiograms
nounds per cubic inch 27679.91 Kilograms per cubic meter
Fuhrenheit aegrees 5/9 Celsius or Kelvin degrees*

* To obtain Celsius (C) temperaturc .e.dings from Fahrenheit (F) readings,

use the following formula:
readings, use:

C = (5/9)(F - 32).
K = (5/9)(F - 32} + 27:.1

ix

To cbtain Kelvin (X)

S.




SUMMARY

This report describes the results of ar investigaticn into the feasi-
bility of combiring the high compres:ive strength of portiand cement con-
crete and the superior tensile strenstil of epoxy or polyester resin con-
crete into a composite beam, This would incresse the beam's flexural
strength and improve the corrosiorn protection for the reinforcement at
large lelleszt4-r~ kv nliminating ter<ile cranks,

The report describes in detail the dev-ic;ment of highestrength resin
concrete mixtures and summarizes the most imprrtant engineerinyg properties
of the selected mixtures. Alsc included are thz rooults of third-roint
loading tests of 12 reinforced and unreinforced compoesite beams with 1-1/2-
and 2-in,-thick layers of epoxy and polyester resin concretes. 7 .ese re-
sults are compared with results of tests of two reference peams without

"

resin corcrete layers and with analytical resulsts.
The study led to the following: rrincipal conclucions:

2. Froperly desizred recin concrete layers at tne tencion face
of concrete beaus can be ved Lo molerately ircrease the
strength and rigidity of reinforced coucrste beams, or tc
uperade the flexural ctrength of unreinforced veams by a
factor of twe to three,

b, More impurtant than their intluence on stremgth is the
sbility of resin concreir layers Lo ;ru’l‘e 1 noncracking
meisture barrier or corrocicn protertion prastically ur te
beam lallure,

¢, The epoxy resins appe

rearel o be more suitable Jor this
plication than the ¢ tur rering investipated due to
lower shrinkage and -1(tn:n: ns o well as L;guar tenaile
strengih and tenzile sirain apacity,

i}
1.
Ly

d. In proyortioning resin consrete mixtures, esrly attention
should be directed w properties cther than strength (su
a5 shrinksge, exotherms, cceffivient of tiermal exyansic
croep, semsitisity te envircizertal fanters, etc.).
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USE OF EPGXY OR PCLYESTER RESIN CONCRTTZ INN
TENSILE ZONE OF COMPOSITE CONCRETE BEAMS

PART I: INTRODUCTION

Background

1. During the past decade or two, resin concretes and resin mortars
have generated ever-increasing interest throughout the building community;
and as a resuit, considerable data on different resin concrete* mixtures
have been forthcoming from research laboratories all over the world. Al-
though a large variety of resin-hardener systems has been investigated for
this purpose, the vast majority of the work has been principally concen-
trated on three groups of resins:

a. Epoxy resins,

b. Polyester resins.

¢+ Furanic resins,
This country has taken the lead in the development and study of the first
two resin groups for civil engineering applications, while sume European
laboratories have concentrated on the lower strength, but more economical,
furanic resins, apparently with fair success.l-s

2. From the growing accumulation of individual data, a technolcegy
is now becinning to evolve, comparable to the well-established conventional
cuncrete or aspnalt technology; in fact, certain basic relations have
already been established. However, it appears that most studies to date
have been restricted essentially to what one might call "basic mixture
rroportioning.” For this rruson, relatively little is “nown about the per-
formance of particular resin concretes or rortar, in the environments of
their potential use, especially over any length of time. Several studiz;
have teen umdertaken on the influcnce o7 resin modifier and hardener type

and content, ss well as aggregate mineralogy, shape, moisture content, aud

* The term resin concrete is aprlied te cciucretes uszing resins in lieu of
portland cenont as 8 binder for %hie aggtegate particles.
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grading, upon the static compressive strength of standard cubes and cy-
linders, the elastic modulus (E), the rupture modulus, etc. Not until

fairly recently, however, was it realized that resin concretes can be

PR T WP

extremely sensitive to placing, curing, and testing condition55’6 (e.g. i
relative humidity, temperature, loading rate, and specimen shape and size),

obviously much more so than conventional concretes, This sensitivity makes

a comperison =ri evaluation of test results from different laboratories

difficult. Also, little is known about the important long-term behavior

of resin mortars in different environmentsl situations; thus, applications

of the new construction material in practice have been slow and very

limited in scope. This is, of course, largely a result of the still com-

paratively high costs of resins, especially epoxies. The majority of

practical applications of resin mortars to date has been in the field of

9-13

grouting7’8 and concrete repair, gspecially repair of concrete pave-

4,5,14,15 True structural applications, i.e. important

ment and bridges.
load-carrying uses, of resin concretes or mortars have been scarce and
cautious and involved only small volumes of material, The few actual
structural applications known to the author were made in the construction
of composite steel-concrete bridges where pure epcxy resins and resin

16,17

mortars have been used to bond oncrete decks to steel girders; also,

these resins have been used in prefabricated concrete construction to join
individual parts to ensure their monolithic ;tc:tion.l&23 The designers,
however, were usually careful not tu rely entirely on the resin mortar
for the safety of their structures and, more often than not, provided steel
connectors fer good m.ea.sure.l6’18
3. One can safely say that the potential of resin concrete as a
structural material is just beginning to be explored. Considering the
high tensile strength (fu) 1o compressive strength ratio, the excellent
corrosion resistance, and the possible low permeability of these concretes
{in addition to high compressive strength, good bondirg characteristiecs,
and rapid setting time) a wide field of structural applications can easily
be visualized--if it were not for the punishingly high costs. It should,
perhaps, be remembered that a large number of structures, in additicn to

carrying external loads, ar¢ exposed to rather severe physicochemical

PTISER
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environments that necessitate very expensive auxiliary measures tc protect
conventional construction materials (such as portland cement concrete,
masonr.’, or steel) from premature degradation. Provisions to protect the
load-bearing structure from an aggreccive environment are sometimes mcre
expensive than the structure itself. Therefore, it seems logical to search
for a material tha‘’ combines the function of carrying the load and protect-
ing the structure trom the particular aggressive environment. Resin con-
crete appears very capeble of fulfilling this double function in the ma-
jority of cases., In fact, it can well exceed conventional structural
meterials in strength and at th2 same time surpass standard protective ma-
terials in corrosion resistance and impermeebility. In addition, resin
concrete develops its full strength in a very short time, just the oppo-
site of conventional concrete,

4, From the above, it follows that resin concrete should not be
regarded as a potential substitute for all conventional concrete since
resins probably will always be more expensive than pertland cement, But
in cases where conventional ccncrete is incapable of giving the desired
combinaticn of strength and corrosion or moisture protection, resin con-
cretes could play an increasingly important role.

5. The study reported herein is an attempt to comoine conventional
concrete and resin concretes in a composite structural member so that the
advantages of both materials can be utilized to achieve an optimum solu-
tion from a technical and eccnomic standpoint. The idea is to replace part
of the conventional concrete in the tensile zone of a beam with resin con-
crete, thereby taking full advantage of the higher fu of this material
without increasing the overall cost to an unacceptable level. A resin
concrete layer at the bottom of a beam in which the tensile reinforcement
is embedded should help in bond and shear and also eliminate cracking
normally inherent in heavily loaded, reinforced concrete beams, thus sig-
nificantly redu.ing the threat of corrosion of the reinforcing steel,
particularly in highly aggressive environments (e.g. desalination plants,
maritime construction, etc.). On the underside of a slab, such a layer
could serve as an integral surface protective layer, shielding the struc-

ture from moisture and chemical attack while contributing to its strength.




Due to the considerably higher strength of resin concretes as compared to
conventional concrete (though usually at a relatively low E and high
creep), a significant increase in the load-carrying capacity could be
hoped for, possibly evern allowing a reduction in the physical size or the
amount of reinforcement in the member. Reinforcing rods with poor bonding
characteristics (plain steel bars, fiberglass rods, etc.) could probably
be used also.

6. The concept of a reinforced, composite portland cement and resin
concrete member, if proven feasible and worthwhile, could certainly be
extended to other configurations (e.g. sandwich construction), different
applications (e.g., repair and strengthening of structures), and structural
elements, However, it is the flexural member that should, in theory, ex-
hibit the most benefic... effect., As a result, this feasibility study was
limited to simply supported beams with a2 rectangular cross section and two
fairly typical resin systems.

Objective and Scope

7. The objective of this pilot program was to investigate the fea-
sibility of using a layer of high-strength, corrosion-resistant, imperme-
able resin concrete in the tensile zone of reinforced concrete beams in
order to improve their strength (or make a reduction of reinforcement
possible), increase their resilience, and increase their resistance to
aggressive environments as well as to facilitate the use of reinforcing
materials with poor bond characteristics and/or chemical compositious
incompatible with portlaend cement concrete. A secondary objective was
to develor resin concrete mixtures and procedures suitable for such
applications.

8. The scope of the investigation was restricted to two particular
resins, i.e. a two-component polysulfide-epoxy compound and a polyester
resin-methyl ethyl ketone percxide catalyst system.

[
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phases,

PART II: TESTING PROGRAM

The experimental progrem was conducted in the following three

a.

The first phase consisted of the design of resin concretes
and the evaluation of their physical properties. With the
two resin-hardener systems chosen as binder materials, a
3/8-in.* maximum size, rounded quartz-chert aggregate was
selected for the main program. Several test series were
performed to determine an optimum aggregate gradation and
resin content for the two resin concretes. Eventually the
values of some of the most important physical properties

of both optimum mixtures (such as compressive strength,
flexural strength, tensile strength, stress-strain charac-
teristics, shrinkage behavior, etc.) were established. Ad-
ditional tests were undertaken with crushed limestone ag-
gregate., Excellent strength results for a polyester concrete
with limestone aggregate were obtained on standard laboratory
specimens; however, due to its excessive shrinkage, the pol-
yester concrete with limestone aggregate could not be used
successfully in the main beam program. (See paragraphs 37
and 62).

Reinforced and unreinforced concrete beams with epoxy
concrete layers were fabricated and tested. Nine 78- by 9-
by 4-in, simply supported beams with different reinforce-
ment and 1-1/2- and 3-in.-thick layers of epoxy concrete
(table 1) were made and tested under third-point loading.
The results of these tests were then compared with the re-
sults obtained from a conventional reference beam without

an epoxy concrete layer.

In the last phase, reinforced and unreinforced concrete beams

* A teble of factors for converting British units of measurement t¢ metric
units is presented on page ix.




were fabricated with polyester concrete layers and tested.
Part of the previous test series, involving a total of four
beams with resin concrete layers and a reference beam, was }
repeated using the more economical polyester resin concrete, :
and the results were compared with those of the reference

beam (table 1).

Materials and Techniques

Epoxy and polyester resins

10. The following two resin-hardener systems were used for this
study.

a. A two-component polysulfide-epoxy compound (1:1 by volume)
having an amber color and a syruplike consistency (price:
about $13 per gallon or $1.15 per 1b).

b. A two~part polyester resin-methyl ethyl ketone peroxide
catalyst diluted with 60% dimethyl phthalate and having
an almost waterlike appearance and viscosity (price: about
$0.38 per 1b for small guantities).

Aggregate
11. Dry, clean quartz-chert aggregate was used for all but a few
resin concrete mixtures to ensure good bonding characteristics with the

3 and minimum shrinkage. In order to obtain a minimum void

resin matrix
content between the aggregate particles and thus achieve the most economi-
cal resin concrete with a relatively high elastic modulus and good strength,
two test series were performed to select a maximun bulk density grading for
both a continuously graded 3/8-in. maximum size aggregate and a gap-graded

aggregate with the same maximum size.

12, Continuous grading. The aggregate was graded v + seven frac-
tions (3/8-in. to No. U4, No. U4 to No. 8, No. 8 to No, 15 16 to No. 310,

No. 30 to No. 50, No. 50 to Nu. 100, and passing the No. luv sicve) and an

exponential sieve curve

A= (d/D)n (reference 24)




Pipatior upih tectipies sv=tarmu e

T~

where
A = amount of material passing sieve opening d (in %)
D = maximum size aggregate
d = variable sieve opening

Four different values (between 0.2 and 0,5) for the exponent n were
tried, and the bulk density of the resulting aggregate mixtures was de-
termined. It was found that the greatest aggregate conpaction, i.e. mini-
mum void content, could be obtained with an exponent »f about 0.4, i.e.
slightly below the exponent that yields the familiasr Fuller parabola

(n = 0.5) (see plate 1). This result agrees well .ith earlier .indirgs
for alluvial sand-gravel mixtures.au The grading used for all continu-
ously graded resin concretes is tabulated below.

Passing Retained Percentage
Sieve on Sieve by Weight
3/8-in, No. L 25.2
No. 4 No. 3 17.3
No. & No. 16 13.9
No. 16 No. 30 10.6
No. 30 No. 50 8.0
No. 50 No. 100 6.9
No. 100 18.5

13. Gap grading. According to the theory of packed sphures, the
diameter, d , of a small sphere that will slip through the gaps between
densely packed larger spheres of a constant diameter, D , (in ~ctahedral

or tetrahedral configuration) cannot exceed
d = 0.1550 (reference 24)

L
In practice, hcowever, it is recommended2 to reduce d to at least 0.1kD

since aggregates are not truly spherical and will te surrounded by a

binder matrix that further decreases the size of the gaps. Thus, taxing

the minimum di cter of tne coarsest ageregate fraction, 3/B-in. to MNo. &,

L i

we obtain a iheoretical maximum dianneter for the next smaller fraction




0.14 x 0,187 = 0.0262 in.

14, Based on these results, a quartz-chert aggregate (0.0059 to
0.0234 in.) supplied by the resin manufacturer for use with their epoxy
resins was considered suitable to fill the volds between the larger ag-
gregate particles. The percentage of the fine sand in the total aggre-
gate mixture was subsequently varied and the loose unit weight of each
aggregate composition determined in order to pinpoint a meximum aggregate
bulk density. Plate 1 shows that a minimum voild content occurred at about
35% (by weight) fine sand content; this grading was subsequently maintained
for all gap-graded mixtures,

15. Warren?s reported an optimum strength for gap-graded resin mor-
tars when the diameter ratio, the ratio of the mean values of the mesh
numbers defining the coarse and the fine sand, was about 1:14 and the per-
centage of the fine sand ranged between 30 and about 50% of the coarse
sand (by weight). This empirical result seems to confirm the validity of
the theoretical considerations that led to a diameter ratio of about 1:20
and a weight ratio of nearly 2:1 between coarse and fine aggregates.

16. Additional trial series with limestone aggregate. Crushed lime-
stone aggregate from Tennessec with a continuous grading, as described

above, was used instead of siliceous aggregate for a series of trial tests
with the polyester resin binder. Since the results of th.cse tests were
considered unsatisfactory (see paragraph 37), limestone aggregate was later
abandoned in the beam test series.

Resin concrete mixture prororticning

17. Using each quartz-chert aggregate mixture, gav-graded and con-

tinuously graded, a series of mixtures was made with both resins, varying
the resin content between 10 and 20% with respect to the total aggregate
weight. Prismatic and cylindrical test specimens werec fabricated from
each mixture, and the unit weight, comprescive strength, E , and nodulus
of rupture were determined after 7 days of curing at room temperature.
Plates 2 and 3 and tables 2 snd 3 summari-e the results of these tests.
A similar series was subsequently made with the polyester resin and a




continuously graded limestone aggregate; the results are shown in table L
and plate L,

18. Two mixtures were finally selected on the basis of strength,
shrinkage characteristics, workability, and economy. It was decided that
a gap-graded mixture with a 16% epoxy resin content and a continuously
graded mixture with a 10% polyester resin content would be used for the
main test series. The decision to use a gap-graded aggregate in connec-
tion with the epoxy resin and a ~ontinuously graded aggregate for the
polyester concrete was prompted by the different viscosities of the two
resins, which resulted in distinctly differert workability and bleeding
characteristics, One limestone aggregate-polyester resin mixture (12%
resin content) that showed excellent strength characteristics but seemed
to shrink excessively was also subjected to further testing.

19, All resin concretes were mixed in 2 1 cu [t verticai mixer with
additicnal hand mixing to ensure thorough homogenization. After mixing,
the resin concrete was placed into the molds in 1-1/2- to 2-in.-thick lay-
ers and compacted with regular tamping rods (polyester concretes) or me-
chanical tampers (epoxy concretes). Latoratory temperatures during the
mixing and placing, as well as during the subsequert curing and testing
period, stayed between 70 and YO F with the relative humidity ranging bve-
tween S0 and 90%. The lack of close humidity and temperature control in
the laboratory is believed to have caused some of the variations in the
test results.

Fortland cement concrete data

20. Unintentionally, two different. portland cement conciete mixtures
w#ere used in the epoxy and the polyester resin concrete beam series. Foth
concretes were proportioned with </8-in. maximum size crushed limestone ag-
gregate to have a slump of 2 + 1/2 ‘n. and cumpressive streagths of ap-
proximately LOOO and 3000 psi, rerpestively, at 28 days. Mixture data and
rhysical properties of the two concretes are compiled in cable 5. It is
felt that the use cf two different portlan! cement roncretes :n the two
test series, although unintertional, 1id net irvalidate a comparison of
results in the two series cince all teams (excep. LA) wer: ~xtremely under-

reinforced and beam failures were lictated by “he tensile strength of the
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reinforcement and of the resin concrete layer rather than by the strength
of the portland cement concrete itself,
Properties of reinforcing materials

21. The following reinforcing materiasls were used in the two com-

posite beam series.

a. Deformed high-strength No. 4 steel bars (nomimal 1/2-in.
dismeter), obtained in Mississippi, were uced as longi-
tudinal reinforcement. The steel had a ylie'd strength
(fy) of 53,500 psi éplate 5), an £, of 69,000 psi, and
an E of 29.9 x 10” psi. Its stress-strain curve up to
10,000 microstrain* was essentially bilinearly
elastoplastic,

b. Stirrups were undeformed No. 2 steel bars, also obtained
in Mississippé (fy = 43,000 psi, £, = 76,500 psi,
E = 29.3 x 10 psi).

¢, One-half-in,-diameter deformed polyester-fiterglass
rods wer2 also tested. These rods had an E of
6.7 x 106 psi, a linear stress-strair curve up to failure,
end an f in excess of 87,000 psi (used in heam S5A).

Fabrication of Test Beams

22. A total of fourteen 78-in.-lcng beams with ractangular cross
sections (4 by 9 in.) were cast during the resin concrete composite beam
program. 1n casting the beam in an inverted position, the :,nventional
concrete was first placad and consolidated with internal vibreztors. The
forms were removed after two days, and moist curing was contimuel tc a
concrete age of 7 days, whereupon the specimens were stored in the labo-
ratory air. Preceding the application of the resin concrete layers at
21 days age, all concrete and reinforcement surfaces %o be in contact
with the resin concrete were first sandtlasted and then painted with pure
resin., Finally the resin concrete was placed in 1-1/2- or j-in.~-thick

1070 in./in.

10
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layers and compacted with tamping rods or mechanical tampers, as mentioned
earlier. The total number of beams were fabricated in one ten-beam series
and in one four-beam series.
23. This first series (Series A) consisted of the following beams.
a. Beam 1A (reference beam)., This beam was a conventional
concrete beam with two regular No. 4 deformed steel rein-
forcing bars and vertical tie: (No. 2 bars at Y-in. specing,

except for a l6-in.-wide portion in the team center that
contained no ‘ies). The reinforcement arrangement and exact
beam dimensions are shown in table 1 and plate 6 for all
beams.

. Beam 2A. This composite beam had 7-1/2 in. ¢f portland
cement concrete and a 1-1/2-in,-t’..ck bottom Llsycr of epaxy

o

resin concrete, The beam was reinforced with s-a«1 bars
and vertical stirrups as in heam 1A,

c. Beam 3A. A composite beam similar to beam 2A, except that
beam 3A had only one reinforcirg bvar.

d. Beam LA, Similar to teams 2A and 3A, except that beam LA
did not contain any longitudinal reinforcement.

e. Beam S5A. The.same as bcam 2A except that this beam was re-
inforced with two Ko. 4 deformed fiberglass rods instead of
regular reinforcing bars.

Beam CA. & composite beam having © in. cf portland cement

|*o
L ]

concrete and 3 in. of epoxy resin concrete cn tue bottom.
The beam wa, reinforced with two cteel bars and vertical
stirrups ilentical with trose used in beam 2A.

£~ Beam 7A. The same as beam I3 except that beam 7A had a
3-in,-thick layer of epoxy concrcte in the ternsion zone,

h. Beam 3. T.c same a5 beam LA except that team BA was cast
with o ‘-in.-thick layer of cpoxy concrete,

i. Beam JA. The same as ueam A except that team 9A cortained

rnc shear reinfrrcerent,
« Beam liA. The came ac team “A except thai bearm 11A con-

tuined rn¢ stirrups.




24, Due to disappointing results in the polyester concrete pretest
series and to limited funding, orly four beems were cast and tested in the
polyester resin concrete phase of the composite beam program. This series,
Series B, consisted of the following beams.

a. Beam 1B (reference beam). The same as beam 1A of epoxy

concrete series,

b. Beam 6B. The seme as beam 6A of epoxy concrete series ex-
cept that polyester resin, quartz.chert aggregate concrete
wags used instead of epoxy concrete.

¢. peam 7B. The same as beam TA (using polyester concrete in-
stead of epaxy concrete).

d. Beam 8B. The same as beam 8A (using polyeser concrete in-
3tead of _paxy concrete).

Two additional beams, identical with beams 2A and 3A of *the epoxy resin

concrete serics, were fabricated using the polyester resin-limestone ag-

gregate concrete mixture described in tatle 7 for the l-l/2-in.~thick resin
concrete layer. During setting, however, the polyester-limestone concrete
developed numerous shrinkage cracks (photograph 5), and the beams were not

tested.

Test Procedures

Tests on resin concrete mixtures

2>, The following series of preliminary tests wa:s performed on spe-
cially prepared specimens.
8. Modulus of rupture and flexural elastic modulus (7-day
tests). Tc determine the rodulus of rurture and the
fleaural elastic modulus, two 2- by 2- by 11-1/u-in.

prisms {photograph 1) made from each nixture were pul on
relier supports 10 in, apart with their finisned side up
ard third-peint loaded at a rate of spproximately 2.0% in./
min. Dial gages moasured midspan Jeflection under in-
creasing loads {photograph O}, Batic linear elastic equa-
tions werc used toc caloulate tne 2lastic modulys and “he

=xivlus of rupture,




Compressive strength at 7 days. For these tests - by 6-in,

cylinders, 2-in. cubes si.wed from the remainc of the pris-
matic specimens after completion of the flexural tests, or
both, served to determine the compre.sive strength of &ll
trial mixtures at 7 days.

Unit weight. All tesi specimens were weighed and measured
before loading to determine their unit weight.

Visual bleeding and shrinkage observations. After fabrica-

tion, the specimens were repeatedly observed for bleeding

and for development of visusl gaps Letween the specimens
and the molds that would indicate excescsive snrinkage.

26, After selccting the most suitable resin concrete mixtures, a

more comprehensive test program was conducted on these mixtures to deter-

mine the values cf their most impcrtant engineering properties.

a.

[=4

Tensile splitting test. A group of 3- by 6-in. cylinlers

served to obtain the tensile splitting Lirength of selected
resin concretes in accordence with methce CRU-C 77-61 (2¢).
Direct tensior test. Using 2- by 6- by i/h-in, plates as
inserts in regular 2- by 2. by 11-1/k.in. prism rolds,

necked specimens were obtained on which lirect tension tests

were performed at 7 days ege (photcgraph 3). These speci-
mens were instrumented with l-in. strain :ages to cbtain
stress~strain curves and Poisson's ratics in tension. The
loading rate was about 0.05 in./min.

Stress-strain curves. In addition tu stress-strain curves

and Poisson's ratios in tension, as described atove, regu-
lar compressicnal stress-strain ~wves and Poisson's ratics
were determined cn straln-gaged 3- by f.in. cylinders alsc
at 7 days age. The loading ra*s for tnese tests was again
approx imately C.0Y in. min,

Shrinkage charscteristics. Iaui, si:rinkage char woteristics

of recin concretes were measursd with R.in., mechanical strain

ages bty inzerting the measurire 2is:s inw the surfsce of

b T Y

- by 2- ty 11-3/%-in, prisms and taking continuous readings
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as soon ag the resin had set up enough to allow such
measurements.

e. Strength development with time. Using 3- by 6-in. cylinders,

the change in the compressive strength with time was deter-
mined fer all three resin concrete mixtures.

27. The length changes of two 2- by 2- by 11-1/L-in. prisms during
five temperature cycles between 75 and 150 F (leaving the specimens exposed
to each temperature until no further changes were observed) were mensured
with 0-in. mechanical strain gages.

28. Thermocouples in the center of l-gt vacuum bottles filled with
fresh resin concrete (which was rodded for compaction) served to obtain
temperature rise curve. for the three mixtures.,

Beam tests

29. loading apparatus, A rigid steel testing frame, shown in photo-

gravph U, was used for all beam tests. The beams were supported on a full
rocker cystem oun one side and a half rocker system on the other side, pro-
viding a span of € ft, Third-point loads were applied by two calibrated
hydraulic jacks resting on ball Learings. One-inch-wide pads between the
rollers and the beams served to distribute loads and support reactions,

30, Test measurements and instrumentation. Longitudinal strains in

the tensile reinforcement were measured in the center of each beam by
l/h-in. resistance strain gages glued to the reinforcing bars. Concrete
surface strains at the top and the sides 27 the becam center were measured
with a 2-in.-iong mechsnical strain gage {(for the location of surface strain
messurements see plate 7). One-in. dial gages mounted on an independent
scaffold, thus unaffected by deformations of the testing frame, measured
beam deflections at five points along the span. A hydraulic system con-
sisting of two 20-ton Jacks, a control panel, and a 2500-psi precision
pressure gage (calibrated before and efter the test series) was used to
apply and measure loads.

31. Test procedure., In placing the beam in the testing frame, par-

ticular attention was given to the exact alignment of the test beam, the
supports, and the loading assembly to ensure true axisymmetric bending.

The five dlal gages, mounted on a separate scaffold, were zeroed against
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the underside of the beam. Straln gages vere connected with the Wheat-
stone Biidge, and initiul {electrical and mechanical) strain readings were
taken,

32. Loads were applied in 500-1b increments (total load), and beam
deflections were read after each increase in load. At intervals of 1000 1t
(total load) a full set of mechanical, concrete surface strain and electri-
cal reinforcement strain readings were taken. Upon completion of the
strain measurements, deflections were read for a second time under the same
load, ¢enerally about 3 min after the first reading.

33. Iloads were completely released at intervals of 3000 1b to check
nonelastic deformaticns (deflections and strains) of the beam prior to the
continuation of' loading., A full load-unload cycle, leading to a total load
3000 1b higher than the maximum load achieved in the previous cycle, usu-
ally took about 15 to 20 min to complete.

34. Cracks were observed throughout the test and all hairline cracks
were marked with ink, Upon any significant change in the crack pattern a

photograph was taken. All beams were tested to failure.
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V.

PART TII: TEST RESULTS

Resin Concretes

L Results of preliminary tests to se=~
lect optirum resin concrete mixtures

35. Tests concerning the selection of aggregate type and grading
were described in paragraphs 11-16; results are shown in plate 1. Two
types of aggregates, a quartz-chert sand and gravel aggregate and a crushed
limestone aggregate, with identical gradings were tried during the poly-
ester resin concrete mixture proportioning series. It is interesting to
note that the limestone aggregate gave a considerably higher strength than
the equivalent quartz-chert aggregate mixtures (tables '3 and L4). However,
short pot life, rapid setting, and excessive shrinkage of the polyester-
limestone concrete prevented its successful use in the main beam test
series. (For more details see below and paragraph 62,)

Trial mixtures
36. Epoxy resin concretes. Results of two series of trial mixtures

(using & continuously graded and a gap-graded quartz-chert aggregate and
varying the epoxy resin content between 10 and 20% of the total aggregate
weight) are summerized in table 2 and plotted in plate 2. Based on the
results of these trial mixtures, which indicated a better workability and
a somewhat higher strength for gap-graded aggregate mixtures, a 16% resin
concrete with gap-graded esggregate was finally selected for the main epoxy
concrete beam test series.

37. Polyester resin concretes. As mentioned earlier, two different

types of aggregates, i.e. quartz-chert sand and gravel and crushed lime-
stone, were investigated during the pclyester resin concrete trial mixture
tests. Results of two series with quartz-chert aggregate (again usinz a
gap-graded and a continuously graded aggregate and varying the resin con-
tent between 10 and 16%) are compiled in table 3 and plotted in plate 3,
while the results for the third series, using continuously graded limestone
aggregate, are summarized in table 4 and plate 4. From these tables and
plates it can be seen that the limestone aggregate series showed a
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conciderably higher 7-day strength than both quartz-chert aggregate series.
However, all limestone mixtures alsc exhibited short pot 1life, flash get-
ting, and excessive shrinkage., Additional series on limestone aggregate-
polyester resin concrete mixtures were subsequently conducted, reducing
the catalyst content from 1 to 1/2, 1/4, and 1/8% in an attempt to elimi-
nate the undesirable flash setting and reduce shrinkage., However, even

a drastic reduction in the catalyst did not satisfactorily eliminate the
problems. Precooling of the aggregate and the resin provided a somewhat
longer pot life; however, the setting was still very rapid, resulting in
high concrete temperatures and excessive shrinkarez,

Engineering properties of the
selected resin concrete mixtures

38. Summarized in tables 6 to 8 are the following: unit weights,
7-day compressive strengths of 3- by €-in. cylinders and 2-in. cubes,
moduli of rupture of third~-point loaded 2- by 2- by ll-l/h-in. prisms,
tensile splitting and direct tensile strengths, elastic moduli in
tension ancd compression, 7-day shrinkage values, average coefficients
of thermal expansion (between 75 and 150 F), and approximate pot life
of the selected epoxy resin concrete and of the two polyester resin con-
cretes (a continuously graded quartz-chert aggregate mixture with 10%
resin content and an identicaily graded crushed limestone aggregate mix-
ture with 12% resin content). Average stress-strain curves in tension
and compression for the three resin concretes are shown in plate 8.
Plate 9 and table 9 depict the strength-time relations, plate 10 the
shrinkage curves, and plate 11 the exothermal temperature rise for the

three mixtures,

Results of Beam Tests with Epoxy Resin Concrete

39. Results of the 10 beam tests in Series A are summarized in
table 10, which indicates the cross-sectional geometry of individual beams
(for exact dimensions see table 1) and lists their calculated and measured
ultimate loads, cracking loads, and midspan deflections under various load

levels.,
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Cracking and failure of beams

40, Beam 1A (reference beam). The first hairline cracks in the h
portland cement concrete appeared at about 400O-1b total load and in-
creased in size and number as the load increased (photograph 6). At about
12,800-1b totel load the reinforcement began to yield. This caused rapidly
increasing beam deflections and led finally to a compressiocial failure of
the concrete at the top of the beam at an ultimate load of 13,000 1b,

41, Beam 2A. The first hairline cracks in the portland cement con-
crete appeared at the 6500-1b total load; they dia not, however, extend
into the epoxy resin concrete layer (photograph 7). Beam deflections at
all load levels were considerably smaller than those of the equivalently
reinforced reference beam. Increasing loads subsequently caused an in-

e ot e s b,

creagse in the number and size of the portland cement concrete ~racks, but
the epoxy concrete layer in which the tensile reinforcement was embedded
remained uncracked up to a total load of 15,000 lb. At this load the
l-l/2-in.-thick resin concrete layer suddenly developed a single major
crack and the steel reinforcement started to yield, causing rapidly in-
creasing beam deflections. Compressional concrete failure finally occurred
at an ultimate load of 15,300 1lb,

L2. Beam 3A. Here the first hairline cracks in the concrete were
observed at 3000 1b (photograph 8). Again the epoxy concrete layer re-
mained uncracked while a total of nine cracks gradually developed in the
portland cement concrete as loads increased. At 8100-1b total load the
epaxy concrete layer falled in tension. Rapid yielding of the single re-
inforcing bar resulted in compressional concrete failure.

43. Beam UA. As might be expected of this unreinforced beam, sudden
failure occurred due to simultaneous cracking of the tensile (epaxy and
portland cement) concrete layer and was not preceded by the formation of
visible hairline cracks in the portland cement concrete (photograph 9).
However, this mode of failure was distinctly different from that of the
other unreinfeorced beams, which did develop tensile cracks in the port-
lana cement concrete long before the cracking of the resin concrete led
to sudden failure.

L, Beam SA (fiberglass-reinforced). The first visible cracks under
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the 6000-1b total load extended from the bottom ot the beam through the
epcxy concrete layer up into the tcp third of the beam. Subsequent in-
creases in the load ceused a gradual increase i:n the size and number of
cracks (photograph 10) until at 16,600 1b the beam suddenly failed in a
compressional mode,

45, Beam 6A, Cracks were first observed urder the 8500-1b load.
They subsequently became larger and more )umerous, but d:d not start to
extend into the epoxy concrete layer until the total load reachea 12,000 1b
(photograph 11). At 14,000 lb, the reirforcement began to yield, and com-
pressional concrete failure occurred at 14,570 1b,

46, Beam 7A. Hairline cracks sterted to appear at 5500 1lb, and the
first crack in the 3-in.-thick epoxy r~oncrete layer was observed under
8000-1b total load (photograph 12). Under the 9000-1b load the reinforce-
ment started to yield, causing & rapid increase in deflection without fur-
ther increases in load.

47. Beam 8A. Photograrh 13 shows a numter of hairline cracks that
formed in the portland cement concrete under LOOO-1b total load while the
epoxy ccncrete layer remained intact. With increasing loads, the cracks
in the portland ceme.it concrete increased in size and number until at
550C 1b one of the cracks finally propagated into the epoxy concrete layer,
causing cudden failure.

48, Beam QA. Similar to the preceding tezt, the portland cement
concrete developed a tctal of six cracks under a load of 3000 ib (phcto-
graph 1L), thereby transferring tensile forces to the 1-1/2-in.-thick
layer of epoxy concrete. The epoxy concrete layer remained intact until
3300 1b wher one of the concrete cracks propagated into that layer, ini-

tiating sudden failure.

Ly, Beam 1lA. Again, hairline cracks in the portland cement con-
crete started to form at a relatively low load (about 2500 1b) and became
larger and morc numerous as the load increased (photesraph 15); however,
not until a total lecad of L200 1b di? one of the cracks propagate into the
ercxy concrete layer, causing failure.

Beam deflections

%3, load-deflection curves four all 10 teams of the epaxy concrete
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series are presented in plate 12, Individual deflection readings at five
points along the span are compiled in table 11, and midspan deflections
for each beam during all loading and unloading cy:les are plotted in
plate 13.

Strain readings

51. Average readings, under various increments of load, fram two
1-in. bonded resistance wire gages cemented to the reinforcing bar(s) and
waterproofed are shown in plate 14, The same plate also summarizes aver-
age mechanical strain measurements on the concrete surface, namely, com-
pressive strain measurements on the top beam surface (average of four
readings at locations 1, 2, 3, and 4 in plate 7); lateral measurements on
the same top surface (average of three resdings at locations 5, 6, and 7
in plate 7); and tensile strain measurements at two different elevations
ir the lower portion of the lateral beam surfaces (i.e. average of four
readings at the bottom of the beam, locations 10, 11, 14, and 15 in
plate 7); and average of another four readings about 1 in., abcre the bottom
of the beam, locations 8, 9, 12, and 13 in plate 7. It must be emphasized
that in the case of the last two mechanical tensile strain measurements thre
average plotted in plate 1L was repeatedly obtained from widely varying
individual readings, since some of the 2-in.-long measuring distances in-
cluded a crack while others did not. Obviously, the strain readings in
cracked sections were very high, while the neighboring uncracked sections
hardly showed any strain at all following the formation of a crack in the
adjoining section. In some instances uncracked sections close to a major
crack showed small compressive strains {up to a maximum of 150 micro-
strains (10'6 in./in.)). The average mechanical tensile strain measure-
ments therefore represent an average <strain over a 4-in.-long distance in
the beam center that at higher loads freguently irncluded at least cne
visible crack.

Moment -curvature relation
92. Midbeam curvatures under different loads were calculated from

the average compressional strairn reading taken on the top beam surface,
from two or three different tensile strain readings, i.e. electrical strain

readings on reinforcing tars, and from mechanical strain readings at two

5%
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elevations on the lateral beam surface., Two or three independent curvature
values were thus obtained for each beam and loeding condition (table 12),
The agreement between the three values was usually surprisingly good, witn
most individual values staying within less than :}O% of their crmmon mean.
Only for very small curvature values (after unloading) and in some instances
at very large curvature values (preceding failure) did individual values
deviate considerably more than 10% from their mean--except beam 3A where
a significant difference between electrical and mechanical strain readinzs
occurred throughout most of the test.

53. To facilitate comparison, average moment-curvature curves (omit-
ting all unloading phases) for the 10 beams of the epoxy concrete series

are presented in plate 15a.

Results of Beam Tests with Polyester Resin Concr.otes

54, It was originally planned to duplicate the whole epoxy concrete
beam series in the polyester reszin concrete series; however, due to disap-
pointing results with the polyester resin concrete and limited funding, it
was decided to curtail the polyester concrete beam program. The results of
the four beam tests in the abbreviated polyester resin concrete series,
Series B, are summarized in table 13, which lists the cross-sectional geom-
etry of individual beams, calculated znd measured ultimate loads, cracking
loads, and midspan deflections under variou:s load levels., Two additional
beams, with cross sections identical with those of beams 2A and 3A in the
epaxy concrete series, were cast using the limestone ag.regate polyester
resin mixture described in paragraph 18 for the resin concrete layer.
However, during setting, numerous lariie crack: developed in the resin con-

crete layer (photograph %) and the two teams were nct tested.

Cracking and failure of beams

%9. Beam 1B (refer-nce beam). The first hairline cracks werc ob-

served et a :000-1b total load and increased in size and number until at
12,000-1t total lead the reinfcocrcement started to yield, causing a ~ompres-
sional fxzilure of the top councrete at 12,240 1t {photocraph 1¥), The

cracking and ultimate moment at u somewiat lower loading ottained on this
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beam, as compared with reference beam 1A for the epoxy series, was caused
by a somewhat smaller beam width (3.90 in. versus 3.97 in.) and a lower
compressive strength for the polyester resin beam series,

56. Beam 6B. Cracks in the polyester concrete layer appeared at
9000 ib (photograph 17). At a 10,000-1b total load, the poriland cement
concrete started to crack. The reinforcement began yi~n'aing et about
11,600 1b, leading to compressional concrete failure at the 12,000-1b total
load,

57. Beam 7B. A miuspan crack in the 3-in. polyester resin concrete
layer and in the lower part of the portland cement concrete appeared at
6000-1b total load (photograph 18). Subsequent increases in loading caused
a rapid growth of this midspan crack and the formation of several other
cracks. At about 6400 1b the reinforcement began to yield and the beam
reached its ultimate load-carrying capacity and failed in compression at
68L0 1b.

58. Beam 8B. No visible cracks appeared in this unreinforced beam
prior to its sudden failure under 3580-1b total load {photograph 19).

Beam deflections

59. The load-midspan deflection curves for the four tested beams of
the polyester concrete series are presented in plate 16 and are plotted
individually in plate 17. Table 14 summarizes all deflection measurements.

Strain readings and
moment-curvature relations

60. Average electrical and mechanical strain readings and computed
moment-curvature relations for three of the beams of this series are com-
piled in table 15 and plates 18 and 15b in the same manner as for the beams
in the epoxy concrete series. Reference beam 1B exhibited a drastic dif-
ference between electrical strain readings on the reinforcement rods and
mechanical strain readings at the concrete surface, possibly caused by an

early hairline crack in the measuring distance,
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PART IV: DISCUSSION OF TEST RESULTS

Resin Concretes

61. The two binder systems used were arbitrarily chosen as fairly
representative examples of a polysulfide-epoxy and a rigid polyester resin
system. It must be realized that other epoxy or polyester resin-hardener
systems will perform differently. For this reason, the results of a
2imited investigation should not be generalized as some ~f the prcblems
enccuntered in a pilot study could certainly be overcome by a system **c
irvestigation of various resin systems and subsequent selection of th uwst
suitable hinder for any particular application.

62. Nonetheless, a few findings in this study appear to be of gen-
eral importance, particularly those involving some negative results. The
results, for instance, indicate clearly that an evaluation of binder sys-~
tems (as well as of aggregate and mixture compositions) that is entirely
based on routine strength tests of standard small laboratory specimens
(such as conventional compressive, flexural, and tensile tests) can lead
to entirely erroneous conclusions as to the suitability of a particular
resin concrete mixture. Besides not reflecting actual field conditlons
that may rather drastically effect the performance of polymer binders,5’27
these tcsts may also overlook another factor of potentially great impor-
tance, namely, the effect of specimen size. A small laboratory strength
specimen usually will be relatively unaffected by exothermal heat release
and volume changes that may lead to very serious problems in actual con-
struction, sometimes making a mixture with excellent laboratory strength
results entirely useless for practical applications. The practical sig-
nificance of strength data obtained from small laboratory specimens under
closely controlled conditions is always debatable; however, with resin
concrete this appears to be a truly critical question. For instance, ex-
cellent strength results were obtained during this investigat:'..n on small
specimens of a poiyecter resin limestone aggregate mixture; yet when the
same mixture was uced in the main beam program the resin concrete developed
large cracks and turned out to be entirely unsuiteble for the contemplated
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application. The problem was caused by the excessive shrinkage of this
mixture. This condition had been anticipated in this particular case
because unrestrained shrinkage measurements had been made together with
the routine strength tests. However, frequently such shrinkage measure-
ments will not be made; and, based on excellent strength results alone,
the erroneous conclusion could then be drawn that a very suitable mixture
had been developed. Similar problems can be encountered with exothermic
heat, humidity effects, coefficient of thermal expansion, and other ef-
fects whose importance is governed by shape, size, and boundary conditicns
of the resin concrete body.

63. The results also show that even under laboratory conditions’with
closely controlled manufacturing and testing procedures and only moderate
environmental changes (the laboratory rooms used were not climate controlled
and had temperature vafiatibns between 70 and 90 F and the relative humid-
ity ranging between 50 and 90%) a rather large variation in test results can
occur. This seems to indicate the sensitivity of resin binders to environ-

mental factors.

éggregates

6. The tests to develop optimum aggregate gradings and their re-
sults were described and discussed in paragraphs 11-15., Two different
aggregates, a well-rounded quartz-chert and crushed limestone with jiden-
tical grading, were used during the polyester resin mixture design series.
As emphasized before, the polyester resin limestone sggregate concretes
developédua considerably higher strength than all polyester resin quartz-
chertlaggregate mixtures., However, the pot life was shorter and the
temperature rise and shrinkage considerably greater with the limestone ag-
gregate. The author theorizes that this phenomenon was caused, at least
in part, by the lower diffusivity of limestone as compared to quartz-chert,
which resulted in a faster and higher temperature rise bringing about a
quicker and more complete polymerization (as well as greater thermal
shrinkage) for the limestone aggregate polyester resin concrete. However,
other factors such as particle shape, surface texture, specific surface,

2,



ete., may have been contributing factors. There is also a possibility of ﬁ
chemical reaction between the limestone aggregate and the polyester resinl
(which has a pH of about 3.8). However, a brief additional test series,
in which 100 g of polyester resin and 1 g of 60% methyl-ethyl ketone pex-
oxide diluted in dimethyl phthalste were mixed with 50 g of both the quartz- |
chert and the limestone aggregate that passed the No. 200 sieve and the |
temperature rise of these two mixtures was compared with the temperature
rise of the pure resin-hardener system, failed to indicate any such reaction
(plate 19). The temperature measurements showed only a minute difference
between the limestone ahd the quartz-chert aggregate ﬁhich can be explained
by the different diffusivity of the two materials. The author surongly
feels that the observed phenomenon warrants further investigation; hcwever,
the scope of this program unfortunately did not allow a systematic study.

It might be mentionea here that Stamenov, Goudev, and Malcev19 have also
reported higher strength results for polyester concretes using a basic

rock (diabésé) rather than quartz as fine aggregate. J. Michie* reported
excellent strength results for a polyester resin concrete with basalt ag-
gregate used in a Nevada field test.

Resin Content

65. Following the selection of resin binder systems, aggregates, and
aggregate gradings, the next step was the development of optimum mixture
precportions. Tables 2-L4 and plates 2-% show the results of the trial
series with varying amounts of epaxy or polyester resins. '

Epoxy concrete series

66. Both the gap-graded and ti.e continuously graded quartz-chert
aggregate series reached a1 maximum unit weight at a resin content of about
14 to 16% of the iotal aggregate weight. This result is consistent with
theoretical considerations (it being roughly the amount of resin necessary
to f£ill the 21 and 24% voids between the densely packed aggregate.phrti-
cles), and with results of earlier investigations.25 The modulus of

* Private communication with Mr. J. Michie, Southwest Research Institnte,
Oct 1965.
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rupture for voth serics increcsed with increasing resin content, which,

6,14,19

too, is & normal result for rc¢sin concretes, The range c¢f modu-

lus of rupture values between 1795 and 2995 psi can be considered typi-

6,5
ral for epexy concretes,"’)’15

as can the modulus of rupture for the pure
resin (5395 psi). Somewhat dirferent results were obtained for the two
series with regard to coapressive strength. While the gap-graded series
showed a distinct increase in compressive strength with increasing resin
content throughout the tested range, the continuously graded series de-
veloped a strength meximum at 14% resin content with values for higher
and lower resin contents falling considerably below that maximum, Sev-

eral earlier investigatorsl’3’15’27

have reported that the compressive
strength of resin concretes reached a maximum with a resain content of
about 15 to 20%, depending on the type of binder and aggregate used.

3

Bares~ suggested recently that two maxima for the compressive sirength
as a function of the resin content occur in resin concretes, one at a
very high resin content (approaching the case of pure resin) and another
at a resin content of the above-indicated magnitude. It may thus be that
the gap-graded mixture would have reached its first maximum slightly above
20% resin content (by total aggregate weight). The compressive strength
of the pure resin was 12,500 psi, almost identical with the highest value
obtained with the gap-graded aggregate at a resin ccntent of 20%. The
range of compressive strength values determined for the epoxy resin trial
mixtures, in generalé ;oigesponds tc those usually found in the literature
272

for resin concretes,

been reported.28

though occasionally much higher values have

A7. In his comments i reference 25, Bares alsc presents a plot
showing the effect of resin content upon c¢ke Young's modulus of resin
concreves, His diagram indicates that for an epoxy resin concrete g
maximum elastic modulus was obtained with a resin content slightly less
than that necessary to produce a maximum compressive strength, i.e. about
14% resin content with respect to the total aggregate weight. While this
was found to be true in this study for the continuocusly graded aggregate,
the flexural elastic modulus of the epoxy resin concrete witlr gap-graded

aggregate stayed nearly the sume for various resin contents (around
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1 x 10b psi) except for the mixture with 204 resin content, which developed

a considerably higher moduius (1.6 x 10° psi). The magnitude of values in : |
general corresponds to those cited by Bares for epoxy resin concretes.
However, it should ve emphasized that the method used to determine the flex- ;
ural elastic modulus in the trial series of this program is rather crude 5
and cannot be expected to yield very accurate results.

68. A few remarks remain tc be made about the effect of the resin

POy

coutent upon the workability ol the tested epcxy concrete mixtures. It
seems that an optimun workability was obtained with a resin coutent of
about 1% to 16%. Iower resin contents resulted in dry, harsh mixtures
with poor workability; higher resin contents tended to cause serious
bleeding.

Polyester resin concretes

69. Within the tested range of resin contents (10 to 20%), the con- : :
crete urit weight tended tc decline with increasing resin content in all
three test series (i.e. gap-graded quartz-chert, continuously graded quartz-
chert, and limestone aggregace). Due to the lower density of the poly-
ester resin (approximately 1.03 g/cu cm) a resin content of roughly 10%
(continuously graded) =nd 12% (gap-graded) theoretically sufficed to fill
the voids between the densely packed aggregate particles. The lower vis-
cosity of the polyester resin, as compared with the epoxy, made it easier
to approach a 100% compaction with a low resin content.

70. The modulus of rupture of the mixtures with gap-graded quartz-
chiert aggregate stayed around 190C psi for all three resin contents tested -
in this series. Both continuously graded aggregate series exhibited a maxi- .
mum modulus of rupture with 12% resin content, the values for the limestone
aggregate concretes being considerably higher then those for the gquartz-
chert aggregate concretes {e.g. 2316 psi versus 1703 psi for 12% resin
content). Practically all polyester resin concrete mixtures in tne trial
series, however, developed a lower flexural strength than comparable epoxy
resin mixtures. The two continuously graded aggregate series alsu showed
a compressive strength maximum at 4% resin content, while the compressive
strength of the gap-graded aggregate series was not clearly affected by ;

the resin content. Again, the strength values for the limestone aggregate
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mixtures were much higher than those for the two quartz-chert aggregate
series. In the majority of cases they even exceeded the compressive
strength obtained on equivalent epoxy resin concrete mixtures,

71, The observation that polyester resin concretes can acvelop a
higher compressive strength than epoxy concretes and at the same time be
lower in flexural strength was alsc made by Bares.6 In turn, Cirod.de15
reported that the opposite can alio be true, L'Hermite,28 in a very re-
cent paper on high-strength resin concretes (he reported compressive
strengths up tc above 20,000 psi for epoxy resin concretes and an average
compressive strength of 12,000 psi for polyester concretes), gives almost
the same ratio between tensile end compressive strengths for both types of
resin concretes (i.e. about 0,125 to 0.1h).

T2. The megnitude of values for the compressive strength aud modu-
lus of rupture cbtained in all three polyester resin concrete series was
similar to those indicated by most other investigators;6’25’29’Varnell*
hovwever, Stamenov, et al.,l9 reported compressive strength values up to
about 17,000 psi and a modulus of rupture as high as 5200 psi for a poly-
ester resin with a diabase and quartz-chert aggregate mixture with approxi-
mately 19% resin content (with respect to aggregate weight).

73. Finally, Young's modulus in flexure for the two continuously
graded aggregate series declined with increasing resin content, and again
the limestone asggregate polyester resin concretes developed much higher
moduli than their counterpart quartz-chert aggregate mixtures (e.g.,

1.45 x 106 versus Ll.14 x 106 psi at 12% resin content). The flexural
elastlc modulus for the gap-graded gquartz-chert ageregate series stayed at
a constant 1.06 X 106 psi for the three resin contents tested. Since
rigid polyester resins usually have a higher elastic modulus than epoxy

resins,l’30

polyester resin concretes are normally expected to show a
25 While this was found to

be true in this investigation as far as the secant modulus in compression

higher elastic modulus then epoxy concretes.

is concerned, the flexural elastic modulus and the tangent modulus in ten-
sion of the quartz-chert aggregate concretes did not change much when

¥ Personal communication with Mr, W. R. Varnell, Concrete Development
Corporation, Sap Antonio, Tex., 26 Oct 1966.
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polyester resin wes used instead of epoxy resin. Due to the high exothernm

of the polyester resin, an attempt to cast 2- by 2- by ll-L/h-in. pris-
metic and 3- by 6-in. cylindrical specimens of pure polyester resin failed
and the intended comparison of their properties with those of similar pure

; epoxy resin specimens could not be made,

74, Cast polyester resiis are known for their tendency to shrink
1,18,31,Varnell*

18,32,

significantly during polymerization (a phenomenon that

usually poses no problems witl epoxy resins . Such shrinkage was
indicated during the trial series by the development of small gaps between
the molds and the polyester concrete specimens during the setting process.
: Particularly drastic shrinkage could be observed in the limestone ag re-
m gate series and in all series the shrinkage appeared to increase as the
resin content increased,

75. The workability of the continuously graded quartz-chert
aggregate polyester resin mixture series reached an optimum at approximately
10 to 12% resin content, and that of the continuously graded limestone ag-
gregate and the gap-graded quartz-chert aggregate mixtures at about 12 to
149 polyester resin content (of total aggregate weight). Higher resin con-
tents quickly led to excessive bleeding of the concrete, while lower 1resin
contents resulted in harsh mixtures with poor compactability.

76. After the conclusion of the trial series, a continuously graded
quartz-chert aggregate mixture with 10% polyester resin content aud a
crushed limestone aggregate mixture with identical grading and 12% resin
content were selected for the beam test program. Engineering properties
of these mixtures are summarized in tables 6, 7, and 8 and are discussed

below,

' Engineering Properties of the Selected Resin Concretes

Compressive strength

77. After 7 days of curing at room temperature, the three selected

mixtures developed the following compressive strengths.

* See footnote, page 28,
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Compressive Strength, psi Ratio of Cube
3- by 6-in. to Cylinder

Mixture 2-in. Cubes Cylinders Strength i
Gap-graded quartz-chert aggre- 10,52h 54556 1,60 !
gate with 16% epoxy resin (10,890) %
Continuously graded quartz- 6,386 6,016 1.06
chert aggregite with 10% (7,127)*
polyester reain
Continuously graded crushed 13,920 13,478 1.03

limestone agpregate with 12% (11,597)*
polyester resin

* Values in psrentheses indicate results obtained in tue trial mixture
series.

The ratio of cube to cylinder strength was thus extremely high for the
epaxy concretes and very low for the polyester concretes. Presumably this
difference is caused by tvhe lower elastic modulus of the epoxy resin, which
perhaps makes the epoxy concrete more sensitive to end restraints,
Tensile strength

78. Three methods were used to test the tensile strength of the se-

lected resin concretes: flexural tests (modulus of rupture), tensile

splitting tests, and direct tension tests. Their results are compared

below:
Modulus Direct
of Splitting Tensile
Rupture Strength Strength Ratios
Mixture (R), psi (S), psi (r), psi R/T  S/T  T,C3* -
Gap-graded quartz- 2513 1140 1600 1.63 0.71 0.244

chert aggregate with (2700)**
14 epoxy resin

Continuocusly graded 1254 1162 630 1.99 1.84 ¢.10
quartz-chert aggre- (1366)#**
Late with 10% poly-

ester resin
Continuously gradeu 2653 2152 1208 2,00 1.7 CL0os
crushed limestone (2316) »»

sggregate with 125
polyester resin

S S

* (g, cyiinder compressive strength,
*#%  Valuces in parentheses indicante results obttalincd in trial series.
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It is thought that the low tensile splitting strength for the epaxy resin
concrete (leading to the unusually low ratio of 0.71 between splitting and
direct tensile strength) is also a result of the low elastic modulus, rel-
atively high tensile strength, and pronounced ~urvatur: ~f L.C stress-
strain curve of the epxxy resin concrete, The tensile splitting test is,
after all, strictly valid for brittle and fairly linearly elastic mate-
rials only; and since the epaxy resin concrete tested was not such a mate-
rial, it is not surprising that its S/T ratio did not fall within tkre
usual range. For the polyester resin concrete with strength properties
more similar to those of ordinary concrete, the ratio resembled that usu-
ally found for portland cement concrete.

79. The ratio of direct tensile to compressive strength for the two
polyester resin concretes is only about 30 to 50% higher than the ratio
that would be expected for a conventional concrete of comparable ccmipres-
sive strength, whereas the epoxy resin concrete developed an extremely high
ratio of 0.24l, which is about three times as high as that for comparable
portland cement concrete,

Elastic modulus and
stress-strain curves

80. Stress-strain curves in compression and tension were determined
on 7-day-old specimens of all three resin concrete mixtures, and the secant
moduli between O and 50C0 psi in compression (Ec) and between O and 1000 psi
in tension (Et) were computed as follows:

Ec Et
Mixture lO6 psi 106 psi I':1;/}:'c

Jap-graded quartz-chert aggregate 0.9€9 1.935 2.0

with 10% epoxy resin
Continuously graded quartz-chert 1.50% 2.07% 1.38

aggregate with 104 polyester

resin
Continuously graded crushed limestone 2,56 3.34 0.94

aggregate with 124 polyester resin

+ 0 to 4000 psi.
*» 0 to 600 psi.




Plates 8a and 8b show that the stress-strain curve of the polyester resin

limestone aggregate mixture was nearly linear over a wide range of stresses
with a sharp curvature close to the ultimate compressional stress, while
the stress-strain curve of the epoxy concrete had an appreciable and fairly
constant curvature throughout. This explains the marked difference in the
Et/Ec ratios. The shape and position of the stress-strain curve of the
polyester resin quartz-chert aggregate concrete falls between the other two,
It should also be noted that both the ultimate compressional and tensile
strains of the epoxy concrete were much higher than those of both polyester
concretes (i.e. 10,400 versus 6000 psi in compression and 1300 versus about
400 psi in tension).
Volume charnges

81, Total linear shrinkage curves (after setting) were obtained on
2- by 2- by 11-1/b-in, prisms. It is thought that the total shrinkage con-
sigts of:

2. Thermal volume changes due to thermal contraction during

the cooling off period after the nardening of the resin.

b. Isothermal volume changes covering all volume changes not
due to temperature variations, such as volume (or density)
changes caused by polymerization.

The total (autogenous) linear shrinkage of the epoxy concrete was less than

1x lO'h in./in. or about a third to a fifth of the values normally en-

countered with portland cement concrete; both polyester concretes developed
much higher shrinkage. The selected polyester resin quartz-chert aggregate
mixture showed a final shrinkage (after 7 days) of about 9 X 1o‘u in./in.
and the polyester resin limestone aggregate shrinkage increased to an ex-
cessive 49 X lo-kin./in. Values of the same magnitude were reported by

Kreijger32 for thin films of polyester resins. It is obvious that shrink-

age of this magnitude will pose serious problems, especially in composite

construction,

82. The question of shrinkage of polyester resin concretes is still
controversial. In 1902, Franz and Bossler,33 and subsequently others,3h’35
reported that “shrinkage values of polyester concretes correspond to those

of regular concretes.”" However, it appears that Fraenz ani Bossler did not
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start their shrinkage measurements until the day after the fabrication of
their specimen, and consequentlv measured only a portion of the total
shrinkage (see plate 10).
Exothermal heat

83. Temperature rise curves obtained from resin concrete in l-qt

vacuum bottles for the three selected mixtures are shown in plate 11,
Due to the relatively low initial mixture temperature (65 to 69 F), two of
the three resin concretes were unusually slow to react. Polymerization
did not get under way until about 2 hr after mixing for the two mixtures
containing quartz-chert aggregate. In the case of the polyester resin con-
cretes, a new shipment of resin was used that may also account for the
much slower hardening than observed during all other parts of the program.
84, At any rate plate 11 shows that:

a. Both polyester resin concretes had a considerably steeper
temperature rise and a higher peak temperature than the
epoxy concrete, indicating a larger and faster release of
exothermal heat.

b. The use of limestone aggregate somenow accelerated the
polymerization of the polycster resin concrete as evidenced
by the shorter pot life, the somewhat steeper slope of the
temperature rise curve, and the higher peak temperature.

Linear coefficient
of thermal expansion

85. Both polyester resin concretes exhibited rather small coeffi-
cients of thermal expansion (6.6 and 7.5 x 10-6/°F), which were somewhat

telow the range of 8.3 to 12.0 x 10'6/°F reported by Liesegang3u’35 for

polyester concrete, Franz and Bossler,33

Z however, have mentioned values
between 7.2 and 7.8 x lO-O/OF for room-cured polyester concretes. The
limestone aggregate concrete showed a ~mallier coeticient than the quartz-
chert aggregate concrete, probably due to the lower coefficient of thermal
expansion of limestone,

8u. Surprisingly, the coefficient of thermal expansion was consider-
ably higher for the epoxy resin concrete (13.2 x 10-6/°F) than for both

rolyester resin concretes. Based on the ccefficients given in the

LWy
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literature for pure epoxy and polyester resins, the opposite would

have been expected,

Composite Beam Tests

Epoxy concrete cqg22§ite beam series
87. The replacement of a 1-1/2- and & 3-in.-thick layer of portland
cement concrete on the tension side of unreinforced and reinforced concrete

beams by epoxy resin concrete resulted in a distinctly increased ultimate
moment, as expected. However, this contribution to the flexural (and prob-
ably the shear) strength, which in the case of typically reinforced beams
was in the order of 10 to 20%, would hardly justify the additional expense
of an epoxy resin concrete layer since the same or a higher increase in
strength can normally be realized more easily and cheaply by conventional
means, e.g. additional reinforcement, larger cross sections, etc. Hcwever,
in the case of unreinforced beams a strength increase of about 100 to 200%
was realized through the use of epoxy resin concrete layers.

88. Thus, perhaps more significant than its contribution to the
strength is the ability of an epoxy resin concrete layer to provide a
noncracking, corrosion-resistant, impermeable cover protecting the embedded
reinforcement from corrosion even in highly aggressive environments and in
situations where ordinary portland cement concrete would have cracked long
before the epoxy, exposing the reinforcement to the environment. Whether
or not equivalent corrosion protection can also be obtained more cheaply
by other means or whether the corrosion protection plus the moderately in-
creased strength and stiffness justify the additional expense of an epoxy
concrete layer are questions that though important, cannot be resolved
within the scope of this feasibility study.

89. Comparison with analysis and individual results. The cracking
loads for all beams with a resin concrete layer were derived in an elastic
analysis that assumed an ultimate tensile strain capacity of 1300 x 10'6
in./in. for the epaxy resin concrete (Appendix A). In addition, the yiela

IR
moment of all reinforced concrete beams was computed using ACI CodoEJC equa-
tion 16-1 with @ = 1 and disregarding the contribution of the resin
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concrete layer, which was considered cracked before yielding of the rein-

forcement started.

90. For the fiterglass-reinforced beam, S5A, an analysis similar to
that described by Sinha and Ferguson,39 but again setting # =1, was
used to obtain the ultimate mcment.

91. The higher of the two computed moments (i.e. the moment at
which the resin concrete cracked or the moment at which the reinforcement
yielded or the concrete failed) was taken as the ultimate moment and trans-
formed into the ultimate load-carrying capacity and compared with the
measured ultimate load. The agreement between calculated and measured
cracking and ultimate loads was fair for the majority of beams; however,
three unreinforced and one reinforced beam with epoxy resin concrete layers
showed large differences between caiculated and measured ultimate loads.

It is felt that variations in the resin concrete are responsible for the
discrepancy. The individual results are as follows.

a. Beam 1A (reference beam). As usual, the measured ultimate

moment was in very close agreement with the calculated
timate moment (ACI Code 31,8-6338 equation 16-1, using

@ = 1), the difference being less than 1%.

Beam 2A. The epoxy resin concrete layer was uncracked up

tc a total load of 15,000 1b (while the concrete above it

showed first visible tensile cracks at 6500 1b) or up to a

[[=4

lead about 15% higher than the ultiiate load cf the refor-
ence beam and 33% higher than the computed cracking load.
This indicated that the actual tensile strength of the resin
concrete layer in this beam was considerably higher than
assumed in the analysis. Failure of the beam occurred
shortly after the resin concrete cracked at a total load
of 15,300 1b, almost 20% above the ultimate load of the
reference heam.

c. Beam 3A. Craching of the epaxy concrete layer occurred at
3100 1b (the first concrete cracks were observed at 3000 1b),
and was presently followed by the failure of the beam. The

calculated cracking or ultimate moment was within 3% of the

()
w




test result, which was about 209 higher than the theoretical
uitimate moment for the same beam without a resin concrete

layer.

Beam 4A (unreinforced). The calculated ultimate moment was

some 12} bLelow the test result, which, in view of the pes-
sible variation in the epoxy ccnerete, was an acceptable
agreement. The determined ultimete moment is thus about
three times the ultiiate moment that would be expected for

a plain unreinforced concrete beam of the same cross section
(assuming L40O-psi tensile strength of the concrete).

Beam SA (fiberglass-reinforced). Both the calculated crack-

ing and ultimate mcments were in very close agreement with
the test results. Due to the low elastic modulus of the
fiberglass reinforcement, the resin concrete layer cracked
under rather low loads, comparable to those of unreinforced
beam LA,

Beam 6A. Due to a lower strength of the resin concrete,
possibly caused by temperature and shrinkage stresses, this
beam developed a lower ultimate moment than beam 2A despite
its 3-in.-thick epoxy concrete layer. The resin concrete
layer cracked under 12,000 1b (calculated cracking load
12,980 1b, or about 8% higher); the first concrete cracks
were observed at 8500 1lb, and the ultimate load was reached
at 14,500 1b, i.e. 12% above the calculated ultimate flex- -
ufal load. In this case, as in the case of beamc 2A and 7A,
it is difficult to explain why the measured ultimate moment
was much higher than the computed ultimate moment despite
the fact that the resin concrete had already cracked at
loads significantly below the ultimate. The author suggests
as a hypothetical explanation that the excellent bond be-
tween the epoxy concrete and the reinforcing steel may have
caused a restraint of the transverse contraction of the re-
inforcing bar at the crack section, resulting in an in- .
creased yield strength.

36
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g. Beam 7A. The calculated cracking or ultimate load of
9240 1b was 2.7% above the measured witimate load (9000 1b)
and 15% above the observed cracking lcad. (8000 1.). Since
the computed yield load (6800 1b) was much lower than the
measured ultimate load and since cracking of the epoxy con-
crete at 8000 1b did not resuli in immediate yielding of the
reinforcement, the hypothetical explanaticn mentioned
in subparagraph f is again inferred.

h. Beams 8A through 11A. Appafently due to a lcwer ‘strength of

the resin concrete layer, these three unreinforced beams
_developed only 52 to 74% of their predicted‘flexural capac-
ity. However, thelr failure moment was still almost two to
three times as high as what was expected for an unreinforced
portland cement concrete beam of equivalent dimensions.
92. Deflections and curvature. Since the epoxy resin concrete layer
did not crack until ..c beams approached failure (except beam 5A with fiber-
glass reinforcement), the cross-sectional moment of inertia remained higher

than in conventional reinforced beams; consequently, the curvature and de-
flections of beams with epoxy resin concrete layers were significantly
smaller, Plate 12 and tables 9 and 10 show that the midspan deflections of
reference beam 1A were between approximately 20 and 504 higher for any
given load then those of beams 2A and 6A, which had 1-1/2- and 3-in. epoxy
resin concrete layers. The difference between beam 2A with a 1-1/2-in.
layer and beam 6A with a 3-in. layer of epoxy resin concrete was relatively
small as far as their deflections were concerned, but was more distinct
with respect to curvature (plate 15).

Polyester concrete
composite beam series

93, Due to the lower tensile strength and much lower ultimate ten-
sile strain of the polyester resin quartz-chert aggregate concrete used,
the contribution of this concrete layer to the flexural strength of rein-
forced beams was small., The developed ultimate strength of reinforced
beams with 1-1/2- or 3-in.-thick polyester concrete layers was only Wﬁ‘ |
higher than the strength predicted by the ACI Code for a conventional besm



of equal cross section and reinforcement. Thus, it can be said that the
polyester concrete layer contribut-d very little to the ultimate strength
of reinforced beams., However, the layer did lacrease the cracking load
of the composite beams to about twice the cracking losd of similar conven-
tional reinforced beams. Consequently, beams with polyester resin con-
crete layers exhibited somewhat smaller deflections and curvatures in the
lower load range than conventional beams, buvt generallv it must be con-
3idered that the investigated polyester resin concretes showed little
promise for application in this type of composite structure. Tne total
failure experienced when trying tc use the polyester resin lirestone ag-
gregate concrete (which had chown good tensile strength in routine tests)

was described earlier,
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PART V: CONCLUSIONS AND RECOMMENDATIONS

94. The results of this investigation showed that resin concrete
layers can successfully be used in the tension zone of flexural members
to increase their stiffness and strength. For the msterials and beam
geometry chcsen, l-l/2-in.-thick layers of epoxy resin concrete led to &
10 to 20% increase in the ultimate moment of reinforced beams and up to
a 2004 increase in the load-carrying capacity of unreinforced teams.
Thicker (3-in.) layers did not appeer to more beneficially affect the
noment capacity, possibly due to increasing internal stresses {shr .nkage
and temperature) in the thicker layers.

95. More important than its influence on strength is the ability of
a properly designed resin concrete layer tc provide a noncracking moisture
barrier and corrosion protection for the embedded reinforcement. While
the conventional concrete above the 1-1/2- and 3-in.-thick epoxy concrete
layers developed the usual hairline cracks under relatively moderate loads,
the epoxy concrete l.yer on the bottom of the beam remained uncracked up to
or very nearly up to failure, thus providing a reliable built-in wvapor
barrier and corrosion protection.

9%, Although the polyester resin concretes chosen for this progranm
were capatble of developing a higher compressive strength than the epoxy
resin concretes used, their modulus of rupture, direct tensile strength,
and tensile strain capacity fell consistently below those of the epoxy con-
crete., This together with the higher exctherm and the excessive autoge-
nous shrinkage, made the investigaled polyes*ter concrete unsuitable for
the interded purpcse. Tests on a few composite beams with polyester resin
concrete layers yielded disappeinting results.

97. 1In developing high-strength resin concrete mixtures, it should
be kept in mind that routine laboratory strength specimens will not prop-
erly reflect the potential deficiencies of the mixture with respect to
shrinkage, exotherm, th~rmal expansion, creep, sensitivity to environmental
factors, etc. JSeparate tests should, therefore, be conducted tc evaluate
these properties before any mixture can be considered suitable for a jar-

ticular practical applicaticn, regardless of how good its strength
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properties inay have been in standard laboratory tests.
g8. The effect of aggregate mineralogy on the polymerization of

resins should alsc be the subject of further investigation.
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Table 1

Epoxy and Polyester Beam Program

Beam Dimensions

Average Average Thickness Area of
Beam  Depth Width d*¥ of Resin Type of Reinforcement
No. in, in. in. in. Reinforcement sq in.
Epoxy Resin Series

1A 9.00 3.97 8.00 - High-strength steel 2(0.2)
2A 9.00 3.63 8.00 1.35 High-strength steel 2(0.2)
3A 8.91 3.92 8.00 1.42 High-strength steel 0.2

LA 9.12 3.93 -- 1.56 None --
SA 9.06 3.87 8.00 1.69 Fiberglass 2(0.18)
6A 8.99 3.81 8.00 2.56 High-strength steel 2(v.2)
TA 9.05 3.98 8.00 2.79 High-strength steel 0.2

8r  8.99 3.72 -- 3.04 None -
oA 9.02 3.98 -- 1.44 None. --
1A 8.99 k.00 -- 3.09  None --

Polyester Resin Series

1B 9.1 3.90 8.0 - High-strength steel 2(0.2)
6B 9.0 3.90 7.60 2.88 High-strength steel 2(0.2)
7B 8.9 3.95 7.90 3.00 High-strength steel 0.2

8B 9.0 3.95 .- ~.00 None --

X Distance from centroid of reinforcement to the top of the beam.
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Table 5
Portland Cement Concrete Mixture Data and Results of Tests

Mixture Data (1-Bag Batch)

‘Volume, cu ft Weight
Muterial (Solid) 1b
Fpoxy Resin Beam Series
Type I cement 0.479 ok
Crushed fine limestone aggregate. 2.195 365.1
Crushed coarse limestone sggregate 2.109 354.8
Water 1.217 75.8
Admixture None
W/C ratio: 0.806 Slump: 1-1/2 in.
Cement factor: L.5 bags/cu yd Unit weight freshly mixed: 145 pef
Compressive strength cf 6- by 12-in. cylinders, psi
Avg
7 days 3040 3000 2820 2953
28 days ‘ L09o LO60 4300 4150
Polyester Resin Beam Series
Type IT cement 0.479 ol
Crushed fine limestone aggregate 2.154 358.33
Crushed coarse limestone aggregate 2.070 34o.4h
Water 1.297 80.8
Admixture None
w/C ratio: 0.8€ Slump: 2 + 1/2 in.
Cement factor: .5 bags/cu yd Unit weight freshly mixed: 1hl4 pcf

Compressive strength of 3- by 6-in. cylinders, psi

Avg
7 days 1768 1768 18838
1895 2003 o037 1998
28 days 2709 2560 2723
3041 3062 o895 2830
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Table 15

Moment-Curvature Relations, Series B

€ - € € - €
€. - €, 8,9,12113 c 10,11,iu,15 c Avarage
d 1 z ,
Moment '6 '-6 "6 -6
ft-1b 10 ~ Radians _10 ~ Radians 10 ~ Radians 10 ~ Radians
Beam 1B
(a = 8.00 in.; a, = 8.10 in.; a8, = 8.95 in.)

0 0 0 0
2,000 62.0 78.1 119.2
k4,000 142.6 207.5 223.8
6,000 202.8 301.0 310.3

0 25.3 211.2 198.1 NA
8,000 273.3 398.0 403.8

10,000 331.6 470.6 488.3
12,000 481.1 1419.0 1504.6
0 - - —-
Beam 6B
(d = 8.00 in.; a) = 8.00 in.; a, = 8.85 in.)

0 0 0 o) 0
2,000 Lz.0 b1.1 45.5 42.9
4,000 96.3 90.6 100.8 95.9
6,000 159.5 147.3 166.1 157.6

0 21.1 17.9 20.3 19.8
8,000 248.7 228.6 26k.1 2h7.1

10,000 32L4.9 300.0 346.0 323.6
12,000 409.5 366.5 314.5 363.5
Beam 7B
(d=7901n,al-7.9Oin,a2-.8751n)

0 0 0 0 0
2,000 Lo, 4 37.6 L1.7 Lo.6
k4,000 91.8 86.3 92.9 90.3
6,000 329,7 600.3 724.8 551,6

0 8.3 320.1 277.5 227.3

Note: NA = not applicable.
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Photograph 1. Typical epoxy resin con-
crete specimens after testing

Photograph 2. Flexural test on 2- by 2- by 11.1/4-in. '
prisms




Photograph U,

Setup for beam tests

-
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Photograph 5. Shrinkage cracks in polyester resin-
limestone aggregate concrete




e. Total load, 13,000 1b

e, ... ..~ failure

Photograph 6. Creck = ._-. . beam 1A (refer-nce team)




PORTLAND CEMENT

d. Total lcad, 14,000 1b

e, Tctal load, 15,00C 1b

f. Total load, 15,300 1t {wl‘immte)

Photcgraph 7.

Crack pattern, besu 2A




a. Total load, 3000 1b

b. Total load, 4000 1b

e e o
e. Totsl load, 6100 1b (witimate)

Miotograph 8. Crack pattern, beam 3a

Photograph 9. Crack pattern, beam UA, after failure at 5140 1b




PORTLAND CEMENT
CONCRETE

b. Total load, 8000 1lb

c. Total load, 10,000 1b

d. Total lcad, 1L,000 1b

e. Total load, 16,000 1b

f. After fallure

Photograph 10. Crack pattern, beam SA




Il PORTLANG CEMENT |

a. Total load, 9000 1b

Photograph 1l.

Crack pattern, beam 6A




b. Total load, 8000 1b

c. Total load, 900C 1b (ultimate)

Photograph 12. Crack pattern, bear TA

) PORTLAND CEMENT
CONCRETE

a. Total load, 4000 1b

c. Total load, 5500 1b (ultimate) o

Photograph 13. Crack pattern, beam 84




 PORTLAND CEMENT
CONCRETE

a. Total loed, 3000 1t

b. After failure

Photograph 14. Crack paitern, beam 9A

a. Total load, 3000 1b

b. Total load, 3500 1lb

c. Total load, L0OOO 1b

d. After failure

Photograph 15, Crack pattern, beam 1l1lA




a, Totael load, 3000 1b

d. Total load, 7000 1b

I"’

P O 5N

e, Total load, 10,000 1b

v ' '.’ '.i

a o .E. .
f. Total load, 11,000 1b
ol »

h. Total load, 12,280 1b (ultimate)

Photograph 16. Crack pattern, beam 1B




a. Total load, 9000 1b

b. Total load, 10,000 lb

c. Total load, 12,000 1b (ultimate)

Photograph 17. Crack pattern, team 6B




—

¢c. After failure at 6840 1b

Photograph 18. Crack pattern, beam 7B

 PORTLAND CEMENT [ SuguSMIN] £7OXY RESN g
§ cowcrere bRt | aae ‘

Photograph 19. Crack pattern, beam 8B, after failure
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APPENDIX A: ELASTIC ANALYSIS FOR CRACKING OF RESIN CONCRETE

1. For the sake of simplicity, and due to the large variation of
resin concrete properties, a linear elastic analysis (similar to ‘he Work-
ing Stress Design method in reference 38) was considered satisfactory.
This analysis is based on the following essumptions:

a. Plane sections remain plane (strains are a linear function

of the distance from the neutral axis).

All materials are linearly elastic.

Portland cement concrete has zero tensile strength.

In-l? o

. A perfect bond exists between the portlend cement concrete,
the resin concrete, and the reinforcement.
e. Sections experiencs pure axial bending.
For these conditions, equation Al can readily be derived from fig. Al by
fulfilling the plane strain and equilibrium of forces requirements and can
be solved for kd .
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1t epu

is the ultimate resin concrete strain before cracking, we obtain

the cracking moment as follows:

M
cp

M_ =
cp

where

€
DU (1a)e(r 2y (2 .
— (kd) (Ec 2)(3 kd + d - kd)

area of tensile reinforcement
width of ream

distance from extreme compression fiter tc centroid of
tension reinforcement

elastic modulv~ of portland cement concrete
elastic modulis of resin concrete (in tension)
elastic modulus of reinforcement

yield strength

height of beam

distance from extreme compression fiber to N.A.
cracking moment

vield moment

- neutral axis

cracking load (per loading poinut)

ultimate load (per loading yoint)

yield load (per loading point)

thickness of bettom resin concrete layer

concrete strain in extreme compression fiver

resin concrete strain in extreme tension fiber
ultimate tensile strain in resin concrete at cracking
average strain in tensile reir ‘orcemeut

'ssion fiver

concreve stress in extreme com; .

A2




opo = resin concrete stress in extreme tension fiber
°R = average tensile strain in reinforcement
Results of

this analysis as well as the calculated yield moments (refer-
ence 38, ultimate strength design) are summarized in table Al,

A3
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